Lattice anisotropy, electronic and chemical structures of uranyl carbonate, UO2CO3, from first principles

نویسندگان

  • Samir F. Matar
  • S. F. Matar
  • Fouad E. Matar
چکیده

Band theoretical results are presented on UO2CO3, based on computations within the density functional theory. The equation of state is obtained with equilibrium lattice properties in agreement with experiment. For isotropic volume change the bulk modulus amounts to 176 GPa. A higher value for anisotropic compression along the linear uranyl characterizes its incompressibility. The electronic band structure shows a semiconducting behavior (∼2 eV band gap) with little band dispersion. From chemical bonding plots and electron localization function mapping, oxygen atoms are found to preferentially bind with uranium for one sublattice and to carbon forming the carbonate ions for the 2 others. This further illustrates the ionic-like (UO2) (CO3) 2− chemical picture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of U3O8 by Calcination from Ammonium Uranyl Carbonate Using Response Surface Methodology: Process Optimization

The parameters to prepare U3O8 by calcination from ammonium uranyl carbonate were optimized by using response surface methodology. A quadratic equation model for the value of total uranium and U4+ of triuranium octaoxide was built and the effects of main factors and their corresponding relationships were obtained. The statistical analysis of the results indi...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

Dissecting the cation-cation interaction between two uranyl units.

We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on ch...

متن کامل

Investigation of ligand exchange reactions in aqueous uranyl carbonate complexes using computational approaches.

Carbonate anion exchange reactions with water in the uranyl-carbonate and calcium-uranyl-carbonate aqueous systems have been investigated using computational methods. Classical molecular dynamics (MD) simulations with the umbrella sampling technique were employed to determine potentials of mean force for the exchange reactions of water and carbonate. The presence of calcium counter-ions is pred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017